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Abstract—The challenging task of analyzing on-chip power
(ground) distribution networks with multimillion node complexity
and beyond is key to today’s large chip designs. For the first
time, we show how to exploit recent massively parallel single-in-
struction multiple-thread (SIMT)-based graphics processing
unit (GPU) platforms to tackle large-scale power grid analysis
with promising performance. Several key enablers including
GPU-specific algorithm design, circuit topology transformation,
workload partitioning, performance tuning are embodied in our
GPU-accelerated hybrid multigrid (HMD) algorithm (GpuHMD)
and its implementation. We also demonstrate that using the HMD
solver as a preconditioner, the conjugate gradient solver can
converge much faster to the true solution with good robustness.
Extensive experiments on industrial and synthetic benchmarks
have shown that for DC power grid analysis using one GPU, the
proposed simulation engine achieves up to 100 runtime speedup
over a state-of-the-art direct solver and more than 50 speedup
over the CPU based multigrid implementation, while utilizing a
four-core-four-GPU system, a grid with eight million nodes can be
solved within about 1 s. It is observed that the proposed approach
scales favorably with the circuit complexity, at a rate about 1 s per
two million nodes on a single GPU card.

Index Terms—Circuit simulation, graphics processing units
(GPUs), interconnect modeling, multigrid method, parallel com-
puting, power grid simulation, preconditioner.

I. INTRODUCTION

T HE sheer size of present day power/ground distribution
networks makes their analysis and verification extremely

runtime and memory consuming, and at the same time, limits
the extent to which these networks can be optimized. In the past
decade, on the standard general-purpose central processing unit
(CPU) platform, a body of power grid analysis methods have
been proposed [8], [14], [22], [19], [23], [17], [24], [20] with
various tradeoffs. Recently, the emergence of massively par-
allel single-instruction multiple-data (SIMD), or more precisely,
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single-instruction multiple-thread (SIMT) [1], based graphics
processing unit (GPU) platforms offers a promising opportu-
nity to address the challenges in large scale power grid analysis.
Today’s commodity GPUs can deliver more than 380 GLOPS
of theoretical computing power and 86 GB/s off-chip memory
bandwidth, which are 3–4 greater than offered by modern day
general-purpose quad-core microprocessors [1]. Moreover, the
number of transistors integrated on GPU is doubling every year,
which already exceeds the Moore’s Law. The ongoing GPU per-
formance scaling trend justifies the development of a suitable
subset of computer-aided design (CAD) applications on such
platform.

However, converting the impressive theoretical GPU com-
puting power to usable design productivity can be rather non-
trivial [11], [15], [10]. Deeply rooted in graphics applications,
the GPU architecture is designed to deliver high-performance
for data parallel computing. Except for straightforward general-
purpose SIMD tasks such as parallel table lookups, rethinking
and reengineering are required to express the data parallelism
hidden in an application in a suitable form to be exploited on
GPU. For power grid analysis, the above goal is achieved by
the proposed GPU-accelerated hybrid multigrid (HMD) algo-
rithm and its implementation via a careful interplay between al-
gorithm design and SIMT architecture consideration. Such in-
terplay is essential in the sense that it makes it possible to bal-
ance between computing and memory access, reduce random
memory access patterns and simplify flow control, key to effi-
cient GPU computing. To the best of our knowledge, our HMD
solver is the first reported GPU-based power grid analysis tool.

As shown in Fig. 1, our HMD solver is built upon a custom
multigrid (MG) algorithm as opposed to a direct solver. Despite
the attempts to develop general-purpose direct matrix solvers
on GPUs [12], so far the progress has been limited for large
sparse problems due to the very nature of GPU such as the
inefficiency in handling random complex data structures and
memory access. Being a multilevel iterative numerical method,
multigrid naturally provides a divide-and-conquer based solu-
tion that meets the stringent on-chip shared memory constraint
in GPU. To further enhance the efficiency of our GPU-based
multigrid algorithm, we keep the original 3-D irregular power
grid as the finest grid, while for the next coarser grid, we pro-
pose a topology regularization step to obtain a regularized 2-D
grid structure that is based on the irregular grid topology. Multi-
grid algorithm that is applied to the coarse grids can very well fit
onto the GPU computing platform, in that the 2-D grid structure
can lead to significantly reduced random memory access and
thread divergence that are critical for high performance GPU
computing. With our coarse grid construction, block smoothing
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Fig. 1. Overall HMD analysis flow.

strategies, restriction, and prolongation operators can be de-
veloped rather efficiently. The proposed multigrid method is
referred to as a hybrid approach in the sense that the entire
workload is split between the host (or CPUs) and the device
(GPUs), in which the multigrid operations for the finest grid
(original power grid) are performed on CPU, while the com-
putations for the coarser to coarsest grids are done on GPU.
The multigrid hierarchy is purposely made deep such that most
of the work is pushed onto the GPU, and only a small frac-
tion of finest grid residue computations and smoothing opera-
tions is conducted on the CPU. Through conducting extensive
experiments, we show that in practice the required number of
CPU-GPU HMD iterations is typically small and the power grid
solutions can converge fast in linear time. Additionally, using
the HMD solver as a preconditioner, more robust Krylov sub-
space iterative methods can be naturally exploited.

II. BACKGROUND AND OVERVIEW

We first review the power grid analysis problems and the
GPU architecture. Next, an overview of the proposed GPU-
based multigrid approach is provided with more details.

A. Power Grid Analysis

The power grid analysis covers two main aspects: DC and
transient analysis. As for DC analysis, power grid problems are
typically formulated into a linear system as [8], [23], [17], [14],
[24]

(1)

where is a symmetric positive definite matrix representing the
interconnected resistors, is a vector including all node volt-
ages and is a vector containing all independent sources. Di-
rectly solving such a large system using LU or Cholesky ma-
trix factorizations is typically very expensive and requires huge
memory resources [22], [20]. Iterative methods [8], [23], [14]
are memory efficient, but may suffer from slow convergence.

Specifically, point relaxation methods update node voltage
using its neighboring nodes repeatedly until achieving con-
verged solution

(2)

where is the node voltage to be updated and is the current
source flowing out the node, while and are the neighboring
conductances and voltages.

In this work, we only focus on the power grid DC analysis,
though transient analysis can be conducted in a similar way with
promising performance.

B. Challenges in Developing Solvers on GPU

A basic understanding of GPU’s hardware architecture is in-
strumental for evaluating the potential of applying GPU ma-
trix solvers to large power grid problems. Consider a recent
commodity GPU model, NVIDIA G80 series. Each card has
16 streaming multiprocessors (SMs) with each SM containing
eight streaming processors (SPs) running at 1.35 GHz. An SP
operates in single-instruction, multiple-thread (SIMT) fashion
and has a 32-bit, single-precision floating-point, multiply-add
arithmetic unit [18]. Additionally, an SM has 8192 registers
which are dynamically shared by the threads running on it and
can access global, shared, and constant memories. The band-
width of the off-chip memory can be as high as 86 GB/s, but
the memory bandwidth may reduce significantly under many
random memory accesses. The following programming guide-
lines play very important roles for efficient GPU computing [1].

1) Low control flow overhead: Execute the same computation
on many data elements in parallel.

2) High floating point arithmetic intensity: Perform as many
as possible calculations per memory loading/writing.

3) Minimum random memory access: Pack data for coalesced
memory access.

Due to the very nature of the SIMT architecture, it remains
a challenge to implement efficient general-purpose sparse ma-
trix solvers on GPU. In recent such attempts, it is reported that
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most of running time is spent on data fetching and writing, but
not on data processing [5], [7]. For instance, traditional itera-
tive methods such as (preconditioned) conjugate gradient and
multigrid methods [5] involve many sparse matrix-vector com-
putations, leading to complex control flows and a large number
of random memory accesses that can result in extremely ineffi-
cient GPU implementations. On the other hand, a problem with
a structured data and memory access pattern can be processed
by GPU rather efficiently. For instance, the performance of a
dense matrix-matrix multiplication kernel on GPU can reach a
performance of over 90 GFLOPS, which is orders of magni-
tude faster than on CPU [18]. Considering the above facts, it is
unlikely to facilitate efficient power grid analysis by building
around immature general-purpose GPU matrix solvers or im-
plementing existing CPU-oriented power grid analysis methods
[8], [14], [17] on GPU.

C. Multigrid Methods for Power Grid Analysis

Multigrid methods are among the fastest numerical al-
gorithms for solving large PDE-like problems [6], where a
hierarchy of exact to coarse replicas (e.g., fine versus coarse
grids) of the given linear problem are created. Via iterative
updates, high and low frequency components of solution errors
are quickly damped on the fine and coarse grids, respectively,
contributing to the good efficiency of multigrid. When properly
designed, multigrid methods can achieve a linear complexity in
the number of unknowns.

1) Prior Multigrid Methods for Power Grid Analysis: Multi-
grid methods typically fall into two categories, geometric multi-
grid (GMD), and algebraic multigrid (AMG). AMG may be
considered as a robust black-box method and requires an ex-
pensive setup phase while GMD may be implemented more ef-
ficiently if specific geometric structures of the problem can be
exploited. The key operations of a generic multigrid method in-
clude the following.

1) Smoothing: Point or block iterative methods (e.g., Gauss-
Seidel) applied to damp the solution error on a grid.

2) Restriction: Mapping from a fine grid to the next coarser
grid (applied to map the fine grid residue to the next coarser
grid).

3) Prolongation: Mapping from a coarse grid to the next finer
grid (applied to map the coarse grid solution to the next
finer grid).

4) Correction: Use the coarse grid solution to correct the fine
grid solution.

On the th level grid with an initial solution , a typical
multigrid cycle has the following steps [6]:

1) apply a presmoothing step to update the th level grid so-
lution;

2) compute the residue on the th level grid and map it to the
th level grid via restriction;

3) with the input that is mapped from the th level grid, solve
the th level grid directly if the coarsest grid level
is reached, otherwise apply a multigrid cycle

with a zero initial guess ;
4) map the th level grid solution to the th level

grid correction component via prolongation operation, and
correct the th level grid solution by: ;

5) apply a post-smoothing step to further improve solution
quality of and return the final solution result .

Existing multigrid methods for power grid analysis fall into
two categories, namely GMD-like methods [14], [21] or AMG-
like methods [19], [24]. To create coarser grid in GMD-like al-
gorithms, a two-step approach is typically adopted. The first step
is to come up with a coarser grid by skipping power grid nodes
geometrically, while the second step is to set up a corresponding
conductance matrix for the coarser grid [14], [21]. By iterative
applying the above procedure, all coarse level grids and their
corresponding conductance matrices can be built before multi-
grid algorithms start. On the other hand, the AMG-like multigrid
algorithms generate coarse grid levels merely based on the con-
ductance matrix properties [19], [24].

Once the conductance matrices for coarse level grids are con-
structed, multigrid operations such as smoothing, restriction,
prolongation, and correction can be performed using sparse ma-
trix-vector operations. The coarsest grid can be solved directly
or iteratively. It should be noted that compared with GMD-like
algorithms, AMG-like algorithms may face more complicated
setup phases and end with much denser matrices for the coarsest
level grid, which may lead to less memory and runtime efficien-
cies.

As described above, all prior multigrid-like power grid sim-
ulation methods heavily depend on sparse matrix operations to
achieve their scalability, whose implementations can bring huge
challenges to GPU computing (see Section II-B). In this paper,
we propose novel HMD algorithms and their implementations
specifically for parallel GPU-based power grid analysis.

2) Our Approach—GPU-Specific HMD Method: To achieve
good analysis efficiency on GPU’s SIMT platforms, we propose
a HMD method for GPU-based power grid analysis. The idea
behind HMD method is to use the original 3-D irregular power
grid as the finest grid in the multigrid hierarchy, and adopt a set
of regularized 2-D grids as the coarser to coarsest level grids. By
handling the irregular grid (finest grid in multigrid hierarchy)
on CPU and the 2-D regularized grids on GPU, we can take
the most advantages of GPU’s SIMT computing capability. In
general multigrid methods, relaxation (smoothing) steps are in-
troduced to damp out the high frequency (short-range) solution
errors, while the remaining lower frequency error components
are mapped to the coarser level grids, becoming their high fre-
quency errors. In our HMD method, we apply the smoothing
step on the original irregular grid on CPU, while all other multi-
grid operations for the coarser grid levels are done on GPU.

It should be noted that, the 2-D grid regularity mentioned
above means topological regularity (interconnect conductances
may vary). By approximating the original irregular grid using a
2-D regularized grid, we ensure that each circuit node in such a
2-D approximation exactly connects to its four neighbors. This
will allow us to use simple array storages to present the grid,
leading to very regular data access patterns and control flows.
These factors are crucial for achieving high computational effi-
ciency on GPU.

Considering GPU’s limited on-chip shared memory re-
sources, the hierarchical iterative nature of multigrid is
attractive to GPU platforms. A key enabler for GPU-based
power grid simulation is an efficient multigrid solver on GPU
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Fig. 2. Acceleration of multigrid solve on GPU.

for handling the 2D coarser to coarsest grids that arise from
the original 3-D power grid structure, for which we propose
a GPU-specific multigrid algorithm. For the 2-D regularized
coarse level grids, we perform all the multigrid computations
on GPU as shown in Fig. 2, involving simple flow controls and
highly regular memory access patterns that are favored by the
GPU’s streaming data processing.

Power grid solution can be efficiently computed using our
custom multigrid solver (as shown in Fig. 1), with no explicit
sparse matrix-vector operations. The computations associated
with the GPU-based multigrid steps constitute the dominant
workload of the entire HMD approach. As for the convergence
rate, the algorithm shares the common properties of multigrid
methods: solution will converge in linear time. Our experiments
on a variety of industrial power grid designs show that after
only a few HMD iterations, power grid error components can
be damped out quickly (with maximum errors smaller than 1
mV and average errors smaller than 0.1 mV).

Denoting the true (original) power grid by and the reg-
ularized grid by , HMD iterations involve the following
main steps (see Fig. 1).

1) CPU: Compute the original grid residue using the
latest solution, and map the residue to the input of grid

.
2) GPU: Solve the regularized grid using GMD algo-

rithm and then return its solution back to the original grid
.

3) CPU: Correct the original grid solution using the previous
GPU result, and apply a post smoothing step.

4) CPU: If the maximum (average) error is below a threshold,
exit; otherwise repeat the above steps.

Since general-purpose CPU is more efficient and flexible for
handling the original (irregular) 3-D power grid, the bulk com-
putation of the entire HMD algorithm is performed on GPU
through solving the regularized 2-D grid (Step 2). Only a frac-
tion of the work, such as the residue computation and smoothing
steps, is preformed on the host.

Although we have observed good performance and robust-
ness of the proposed HMD algorithm in extensive experiments,
we also develop a preconditioned conjugate gradient (PCG)
scheme, where our HMD solver is used in the inner loop as a
preconditioner. This choice provides a theoretical convergence
guarantee under the framework of preconditioned CG. With
the high quality HMD preconditioner, the number of PCG

Fig. 3. Top view of node distribution of an industrial power grid design.

iterations can be dramatically reduced. And as before, the bulk
of the computation is accelerated on the GPU.

III. 3-D-TO-2-D GRID REGULARIZATION

The number of our HMD iterations depends on how well
the coarse level grids are constructed. If the coarse grids can
properly approximate the original 3-D grid, HMD algorithm for
power grid analysis can converge very fast. On the contrary, if
not well designed, the number of multigrid iterations may in-
crease. In this section, we propose a simple yet effective way
for obtaining good regularized 2-D grid structure (coarse level
grid) from the original power grid netlist.

A. Getting A Coarse Level 2-D Grid

The idea is to stamp the original 3-D power grid elements
onto a 2-D regularized grid such that the electrical property of
the original grid can be well preserved on the 2-D grid. As such,
the regularized 2-D grid can provide good solution approxima-
tion for the original power grid, which therefore allows a fast
convergence of the HMD algorithm.

Industrial power grid designs [16], [2] typically exhibit glob-
ally uniform grid structures (as shown in Fig. 3), except for some
local grids that have irregular patterns. Consequently, we pro-
pose to generate the coarse level 2-D grid using typical wire
pitch values (of the bottom metal layer) and stamp all the orig-
inal multilayer irregular grid elements (resistors, current and
voltage sources) onto the 2-D grid. In this way, the electrical
properties of the original power supply network can be well pre-
served on the coarse level grid, while the resultant grid storage
pattern allows highly efficient GPU data access and processing.

It should be emphasized that the purpose of the above ele-
ment stamping procedure is to get a relatively good coarse level
grid approximation for the HMD iterations. The 2-D regular-
ized grid does not need to fully represent the original power grid
structure, though a better approximation can lead to faster con-
vergence. Since the via resistance is typically much smaller than
the grid resistance, in the coarse grid generation step, we simply
collapse the original 3-D grids to the 2-D grid and remove the
via resistors connecting different layers. As we show in Table I,
the 3-D grid nodes that have been connected through via re-
sistors have negligible voltage difference (much smaller than 1
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TABLE I
TOP AND BOTTOM LAYER NODE SOLUTIONS (� IS THE NUMBER OF

METAL LAYERS, �� IS THE NODE VOLTAGE RANGES, � IS THE

AVERAGE VOLTAGE DIFFERENCE BETWEEN THE TOP AND BOTTOM

METAL LAYERS, AND � % IS THE RELATIVE VOLTAGE

DIFFERENCE, FOR THE VDD/GND GRIDS, RESPECTIVELY.)

Fig. 4. Coarse grid generation using 3-D-to-2-D topological regularization.

mV). The above 2-D grid regularization procedure is shown as
follows.

1) Step 1: By neglecting via resistances, all the metal layers in
the network are overlapped on the same 2-D plane ( –
plane), forming a collapsed 2-D irregular grid.

2) Step 2: By examining the original grid pitches in - and
-directions, fixed pitch values (for both - and -direc-

tions) are selected, such that locations of the 2-D grid nodes
can be determined.

3) Step 3: Circuit elements are stamped onto the above 2-D
regularized grid. Elements that occupy multiple regular
grid nodes have to be decomposed into smaller pieces
(larger conductance values) during the stamping, while
current and voltage sources are simply stamped according
to their geometrical locations.

A simple example has been shown in Fig. 4, in which a simple
two-metal-layer irregular power grid is stamped onto a single-
layer regularized grid. The conductance values on the regular-
ized grid can be determined as follows:

(3)

Note that the above procedure is not the only way to generate
the coarse level (regularized) grid structure for multigrid pro-
cessing. In this work, we notice that such a grid construction
method can provide a good coarse level grid approximation for
the original power grid circuit.

Due to the irregularity of the original 3-D grid, some of
the coarse level grid nodes may not correspond to any of the
original grid nodes. In this case, small dummy conductances

are inserted between such grid nodes. Note
that the uniform pitches of the 2-D grid may be set to the
average pitch values of the irregular grid, and can be adjusted.
Typically, smaller uniform pitch values lead to increased 2-D
grid sizes and better approximation of the original grid. Our
experience shows that slightly changed coarse grid sizes do not
significantly influence the overall runtime efficiency, which is
due to the linear complexity of multigrid algorithms. For the
GPU hardware used in this work, we set the 2-D regularized
grid size to be slightly smaller than the original grid size (50%
to 90% of the original grid size). It should be noted that if in
the future, GPU computing power gets dramatically improved
(compared with the CPU), larger 2-D regularized grid sizes can
be used to ensure a faster multigrid convergence (fewer HMD
iterations).

B. Regular Data Structure for 2-D Coarse Level Grids

The 2-D coarse grids obtained from the above 3-D-to-2-D
regularization step, can be stored using regular data structures
(e.g., 1-D or 2-D array), which ensures efficient coalesced
memory access of GPU device memory. For instance, assume
a regular 2-D coarse grid is stored in a 2-D lookup table (LUT),
and the two table indices are the 2-D regular grid node indices
as shown in Fig. 4 (only 1-D regular grid index is shown in the
figure). Then the -, -, and -directional interconnects as well
as the current source that connect to a grid node , can be
stored in the following four 2-D LUTs.

• Horizontally connected conductance between
node and node .

• Vertically connected conductance between node
and node .

• The conductance that connects node and
the voltage sources.

• The current source that flows out node .
Since the above 2-D grid resistors are stored in consecutive

memory space (not in a sparse matrix), multigrid operations
can be directly performed based on these 2-D LUTs, leading to
GPU-friendly coalesced memory accesses and high-throughput
GPU computing.

IV. MULTIGRID OPERATIONS FOR COARSE LEVEL GRIDS

While 2-D regularized grids can be obtained in a relatively
straightforward manner, developing an efficient multigrid grid
algorithm for GPU computing is nontrivial. Naive implementa-
tions for either data transferring or processing can lead to se-
vere performance degradation. This section discusses several
key steps of the GPU-based multigrid operations.
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Fig. 5. VDD pads �� � and current sources (residues) in fine/coarse grids.

A. Coarse Grid Hierarchy

Based on the 2-D regularized grid obtained from the original
3-D grid (as shown in Section III), a set of increasingly coarser
grids are created to occupy the higher grid levels. In this case, the
2-D grid produced by the previous stamping step serves as the
second finest grid in our multigrid method, while the original
3-D grid serves as the finest grid sitting at the bottom of the
multigrid hierarchy. Ideally, these coarse grids should be created
such that the increasingly global behavior of the finest grid is
well preserved using a decreasing number of grid nodes. Unlike
in CPU based multigrid methods, here on GPU, it is critical to
carry the good regularity of the coarse level grids throughout the
multigrid hierarchy so as to achieve good efficiency on the GPU
platform. The goal is achieved from the following view of the
I/O characteristics of the power grid.

When creating the next coarser grid, we distinguish two types
of wire resistances: resistances connecting a grid node to a VDD
source (or VDD pad conductances) versus those connecting a
grid node to one of its four neighboring nodes (or internal re-
sistances) on the regular grid, as shown in Fig. 5. Importantly,
the two types of resistances are handled differently. We main-
tain the same total current that flows out the network and the
same total wire conductance that connects the grid to ideal
voltage sources (e.g., total VDD pad conductance). In this way,
the same pull-up and pull-down strengths are kept in the coarser
grid of a power distribution network. Denote the voltages of
grid nodes that connect to ideal voltage sources via wires by

for , and the loading current sources by
for . The following equation holds:

(4)

To maintain approximately same node voltages at VDD
pad locations in the coarser grid, we ensure that and

are unchanged. Consequently, as shown in Fig. 5,
both the VDD pad conductance and current loadings
(or residues) are summed up when creating the coarser grid
problem. Differently, internal conductances are averaged to
create a coarser regular grid that approximately preserves the
global behavior of the fine grid.

Using and to label the fine and coarser grid components,
respectively, the coarser grid can be created as follows:

(5)

where and denote 2-D grid location (2-D LUT indices), and
the numbers of nodes along the horizontal and vertical direc-
tions are reduced by a factor of two in the coarser grid (total
grid size reduced by a factor of four).

B. Inter-Grid Operators

The restriction and prolongation operators in this work are
defined in the following way to allow more efficient GPU pro-
cessing.
Restriction:

(6)

Prolongation:

(7)

where residues and errors (solution corrections) are denoted
by and , respectively. Apparently, the coarser level grids
and the associated inter-grid operations are defined completely
based on 2-D grid geometries that can be stored and processed
in the regular data structure introduced in Section III.

In our multigrid flow, the coarsest grid (with a few hundreds
of nodes) is solved using an iterative block-Jacobi algorithm
which can be suitably implemented for GPU platform. To
reduce the overhead of this coarsest grid solving, the multigrid
hierarchy is purposely made deep. In our experiments, four to
eight grid levels are used, such that the sizes of the coarsest
problem vary from a few hundred to a few thousand times
smaller than the original grid sizes. This choice may push
more than 99% of overall multigrid computations onto GPU
hardware (except a convergence check on CPU).

C. Point Versus Block Smoothers

The choice of smoother is critical in multigrid algorithm
development. Typically, point Gauss–Seidel or weighted Jacobi
smoothers are used for CPU-based multigrid methods. In this
work, a block-based smoother is adopted to fully utilize GPU’s
computing resources. On GPU, a number (more precisely a
warp [1]) of threads may be simultaneously executed in a
SIMD fashion on each streaming multiprocessor (SM). This
implies that multiple circuit nodes can be processed at the same
time. For instance, assume a block of circuit nodes are loaded
onto an SM at a time. Then, multiple treads are launched to
simultaneously smooth the circuit nodes in the block using a
number of iterations. Finally, the above processing step (almost)
completely solves the circuit block, effectively leading to a
block smoother. The above approach ensures that a meaningful
amount of computing work is done before the data (in shared
memory or registers) is released, and a new memory access
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takes place. In other words, it contributes to efficient GPU
computing by increasing the arithmetic intensity. This block
smoother will be discussed in detail in Section V.

V. ACCELERATING MULTIGRID ON GPU

To gain good efficiency on the GPU platform, care must be
taken to facilitate thread organization, memory and register al-
location, workload balancing as well as hardware-specific algo-
rithm development.

A. Thread Organization

Through a suitable programming model (e.g., CUDA [1]),
GPU threads shall be packed properly for efficient execution
on SMs. On an SM, threads are organized in units of thread
blocks, where the number of blocks should be properly chosen
to maximize the performance. A GPU-friendly thread block typ-
ically includes multiples of 32 threads for a commercial GPU
[1]. In our implementation, the actual optimal thread block size
is chosen experimentally.

B. Memory and Register Allocation

Before the multigrid solve starts on GPU, 2-D LUTs are al-
located on CPU (host) to store all the regularized grids in the
multigrid hierarchy. Then, LUT data is transferred from host to
device (GPU). We bind the conductance LUTs ( and )
to GPU’s texture memory and other data to GPU’s on-board de-
vice memory (DRAM). Since texture memory is cached, its ac-
cess latency is significantly smaller (around two times smaller)
than the global (device) memory latency. However, GPU’s tex-
ture memory is read-only and cannot be used for grid solu-
tion updates. Therefore, residues, solution and error vectors are
stored in the device memory (which is not cached), for which
coalesced memory accesses should be employed to gain good
memory bandwidth.

GPU’s fast on-chip shared memory and registers are very lim-
ited. For instance, each SM of our GPU hardware has 16 kb
shared memory and 8 kb registers. If the GPU kernel function
consumes greater shared memory or register resources that ex-
ceed what are available, the application will fail. It is also im-
portant to allow (assign) more than one block of threads to run
concurrently on each SM. This strategy helps hide GPU memory
latency and will lead to a much higher performance throughput.
In this work, all components of our GPU accelerated multigrid
algorithm are developed carefully to fully utilize GPU hardware
resources.

C. Mixed Block-Wise Smoother

In our multigrid algorithm flow, the relaxation (smoothing)
step takes more than 90% computation time. Hence, an effi-
cient implementation of the smoother is critical. For typical
CPU-based multigrid solver, point-wise iterative methods
such as Gauss–Seidel or weighted Jacobi smoothers are often
adopted for good performance. For streaming data parallel
computing on GPU, it is important to maximize the arithmetic
intensity (computations/memory accesses), ensure efficient
coalesced (block) memory accesses and simplify control flows.
To this end, we propose a global block Gauss–Seidel iteration
(GBG iteration) scheme and a local block weighted Jacobi

Fig. 6. Mixed block relaxation (smoother) on GPU.

iteration (LBJ iteration) scheme for the GPU-based multigrid
algorithm. As illustrated in Fig. 6, during each GBG iteration,
the whole 2-D regularized coarser to coarsest grids are par-
titioned into smaller blocks, and subsequently transferred to
the SMs on GPU. Next, times LBJ iterations are performed
for the nodes within each circuit block locally. Since only
the threads within the same thread block are able to share
their data with each other (in the shared memory or registers),
the node solutions of the block can not be shared by other
blocks unless their solutions are sent back to GPU’s global
memory (DRAM). Using the latest neighboring block solutions
in the global memory, the above local LBJ iterations can be
repeatedly performed to iteratively update all the grid block
solutions. Therefore, from a global point of view, the above it-
eration (relaxation) scheme can be considered as a global block
Gauss–Seidel smoother (GBG), in which circuit block solutions
are updated using the latest neighboring block solutions. It is
also clear that the local block iteration scheme for the nodes
within each grid block can be considered as a local block Jacobi
smoother (LBJ), in which all the grid nodes within a block
are updated locally by multiple threads simultaneously in a
weighted Jacobi fashion. The above two iteration schemes have
been carefully tailored for our GPU-based multigrid algorithm,
particularly through the following considerations.

1) To increase the arithmetic intensity, we perform times
LBJ iterations for each global memory access. can be
determined based upon the block size: larger block size
requires to include more LBJ iterations. However, exces-
sive local iterations may not help the overall convergence
since block boundary information has not been immedi-
ately updated.

2) To hide the memory latency and thread synchronization
time, we allow two or more grid blocks to run concurrently
on each SM to avoid idle processors during GPU thread
synchronization and device memory access. This method
is especially important for improving the GPU computing
performance of bandwidth limited applications.

The block size may impact the overall performance signifi-
cantly. A too large block size can lead to slow convergence
while a too small size may cause bad memory efficiency and
shared memory bank conflicts. To minimize shared memory
and register bank conflicts, block sizes such as 4 4 or 8 8
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Fig. 7. Appending dummy grid nodes for a chosen block size.

are observed to offer good performance (good tradeoff be-
tween GPU computing efficiency and the multigrid algorithm
efficiency). In our GPU algorithm implementation, we use a
block of 8 8 (4 4) GPU threads to work on a block of 8 8
(4 4) regular grid nodes. In this way, at any time of GPU com-
puting, 128 regular grid nodes are processed by 128 streaming
processors (for NVIDIA’s 8 series GPU cards), enabling highly
efficient massively parallel computing capabilities.

D. Dummy Grid Nodes

As discussed before, GPU data processing favors block-based
operations. If the 2-D regularized grid dimensions are not multi-
ples of the thread block size, extra handling is required. For ex-
ample, assume one smoothing kernel of the multigrid solver is
executed on all coarse level grids using the 8 8 thread blocks.
Then, the dimensions of the coarse level grids need to be multi-
ples of the block size (8 8). To this end, certain dummy grids
can be attached to the periphery of the coarse grids. It is very
important to isolate these dummy grids from the original grid,
as shown in Fig. 7. Otherwise, the multigrid convergence can be
significantly impacted.

E. An Example of Block–Jacobi Iteration on GPU

By denoting regular grid node solution by , and assuming
that 2-D LUTs are used to store the 2-D regular grid (introduced
in Section III), we show GPU memory access pattern of one
mixed block-Jacobi iterations using shared memories and reg-
isters as follows (block size is 4 4 in this example).

1) Load 4 4 grid solution data from the global memory to
the shared memory and 4 4 regular grid data ,
and to the registers.

2) Load four boundary solutions and grid data to shared
memory and registers.

3) Do times local block Jacobi iterations.
4) Return the 4 4 grid solution data to global memory for

block solution update.
The above block Jacobi iteration is accomplished by using

a 4 4 GPU thread block (including 16 threads), as shown in
Fig. 8, where “ ” represents the shared memory address that
is accessed by a GPU thread, and the tiles in red represent the
shared memory (registers) that stores the solution data (grid
data). As shown, the central 4 4 regular grid block solution
is updated through block Jacobi iterations (using four of its
neighboring block solutions) by a 4 4 GPU thread block,
which is followed by returning its latest block solution to
GPU’s global memory space. It is not hard to imagine that a
few tens of such grid blocks (a few hundreds of power grid

Fig. 8. GPU memory access pattern during a block Jacobi iteration.

Fig. 9. Hybrid GPU-CPU HMD iterations.

nodes) can be processed simultaneously using GPU’s hundreds
of cores (streaming processors), which is not possible for CPU
computing.

VI. HYBRID MULTIGRID FOR POWER GRID ANALYSIS

After discussing the multigrid operations on GPU in
Section V, we consider the full HMD flow in this section. By
performing GPU-based multigrid operations for the 2-D coarse
to coarsest grids on GPU, we can obtain approximate node
solutions to the original power grid system. By introducing
an extra smoothing and correction step for the original grid
on CPU, more accurate solution can be computed. The above
HMD iteration framework has been shown in Figs. 1 and 9, and
also outlined in Section II-C.

A. Problem Formulation

Assume that for a 3-D irregular power grid , the fol-
lowing large linear system of equations need to be solved:

(8)

where is the original grid system matrix, repre-
senting a linear operator
is the exact solution vector to be solved, and is the
right-hand side (RHS). Denote the system matrix of the 2-D
regularized grid as , which is a linear
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Fig. 10. Power grid simulation scheme on multi-core-multi-GPU platform.

Fig. 11. Ratio of GPU computation time (� /� ). � is the GPU computing
time and � is the total computing time.

operator . Denote the solution of the orig-
inal grid in the th HMD iteration as . The following
steps are performed in the th HMD iteration. The residue
associated with is computed and mapped onto on the
2-D grid as

(9)

where is a proper linear operator .
Note that the above simple computations are done on the CPU.
With , a solution correction is computed on the 2-D grid
on GPU

(10)

is returned to the CPU host for further processing. is
mapped back to the original grid via

(11)

where is a proper linear operator . The
solution for the finest grid is updated

(12)

Finally, if the solution correction is below a user-de-
fined threshold, is returned as the final solution. Other-
wise, proceed to the th HMD iteration. The inter-grid
( and ) mapping operators and may be inter-
preted as a prolongation or restriction operator, respectively, as

in a classical multigrid method, depending on the relative sizes
of and . They are also constructed in a way similar
to prolongation or restriction operators.

The HMD method has been described in detail in Algorithm
1. It should be emphasized that the proposed multigrid algorithm
can converge fast to the true solution given a good coarse grid
representation (such as the one proposed in Section III). The
relaxation steps on the original grid as well as the coarse
level grids are important to successively damp out all the error
components.

Algorithm 1 GPU-based HMD algorithm

Input: The conductance matrix obtained from
the original irregular power grid ( with nodes) sitting
on CPU hardware, the 2-D regularized grid with
nodes sitting on GPU device, the 2-D-to-3-D grid projection
matrix (11), the 3-D-to-2-D grid projection
matrix (12), the 2-D multigrid solver on GPU
that computes the solution ) where the
input and output vectors are , the RHS vector

of conductance matrix , the initial solution guess
, the maximum number of iterations , the

number of weighted Jacobi iterations , as well as the error
tolerance .

Output: The solution for all grid nodes of .

1: Do times relaxations for to get ;
2: Calculate the ;
3: for : do
4: ;
5: ;
6: ;
7: ;
8: Do times relaxations on to get updated

;
9: ;

10: if then
11: exit the loop and return the solution ;
12: end if
13: end for
14: Return the solution ;

B. HMD on Multi-Core-Multi-GPU System

The proposed HMD algorithm is highly parallelizable, and
the workload can be easily partitioned based on the geometrical
information of the power grid circuit. In this work, we propose
to parallelize the HMD simulation on multi-core-multi-GPU
system (see Fig. 10). As an example, assume we want to solve
an -node power grid on a quad-core machine with four GPUs,
and we use each CPU core to talk with a GPU card, such that
each small grid partition (e.g., a grid partition with about N/4
nodes) can be solved independently on a GPU by using the pro-
posed multigrid method. When the solutions of all grid parti-
tions are obtained and sent back to the full grid (in CPU’s shared
memory), a few smoothing steps can be performed and the grid
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Fig. 12. Solution comparison of direct method and the GPU-based multigrid method (using one HMD iteration).

residuals can be computed subsequently. Next, new RHS vec-
tors (residuals on full grid) are sent to GPUs again for subse-
quent multigrid iterations. In this manner, even very huge power
grid designs can be handled efficiently. For instance, assume
that each GPU can solve up to ten million grid nodes (with 512
Mb GPU memory), then a four-core-four-GPU system can solve
up to 40 million nodes. It should be noted that each power grid
partition should contain overlapping grid nodes of its neigh-
boring partitions, to ensure a faster convergence rate.

To implement the multi-core-multi-GPU multigrid algorithm,
the GPU code (written in NVIDIA’s CUDA language [1]) is
compiled to a static library that can be further invoked in the
C/C++ code. Pthreads library [4] is used for the multithreading
programming and each thread will control a single GPU card
throughout the computation. Care must be given to data struc-
ture design of the GPU code: each power grid partition must be
stored in the on-board memory (DRAM) of its own GPU device,
while the full power grid solution are updated in the multi-core
CPU’s shared memory during each CPU-GPU iteration proce-
dure. To minimize to the data communication between the host
and device, only the boundary solution of each grid partition is
transfered that only takes negligible time.

VII. MULTIGRID PRECONDITIONED CONJUGATE

GRADIENT METHOD

A preconditioned conjugate gradient method for power grid
analysis has been proposed to improve the convergence rate [8].
However, such methods usually require finding good precondi-
tioners for achieving decent performance. While the incomplete
Cholesky factorization method has be shown to create good pre-
conditioners for power grid analysis, such preconditioning tech-
nique may not be suitable for GPU-based parallel computation,
in that there is not an efficient way to store and process the
preconditioners (incomplete Cholesky factors) on GPU hard-
ware. Instead of using the “black-box” incomplete factorization
methods, in this work, we propose a GPU-accelerated multi-
grid-based preconditioner for power grid analysis.

TABLE II
POWER GRID SPECIFICATIONS. GRID SIZE IS THE NUMBER OF NODES OF THE

ORIGINAL POWER GRID, R. GRID DIM. IS THE 2-D COARSE GRID DIMENSION,
� IS THE NUMBER OF MULTIGRID LEVELS, � IS THE NUMBER OF

V-CYCLES, �� (MV) IS THE DIFFERENCE BETWEEN THE MAXIMUM AND

MINIMUM NODE VOLTAGES � � �

Multigrid-preconditioned conjugate gradient (MGPCG)
methods [3], [13] have been proposed to combine the faster
but less robust multigrid solver with the slower but more
robust conjugate gradient method to form a more robust and
parallelizable algorithm. In this work, we propose a GPU-ac-
celerated multigrid preconditioned conjugate gradient method.
More specifically, we do not form a preconditioner explicitly
but rather use the GPU-based HMD solver as an implicit
preconditioner. As shown in our experiments, with such a
GPU-accelerated multigrid preconditioner, the power grid anal-
ysis requires significantly less iterations for achieving accurate
solution than the traditional conjugate gradient method. In the
current implementation, we accelerate the multigrid solver on
GPU, while the rest of conjugate gradient computations are
done on CPU.

VIII. EXPERIMENTAL RESULTS

Extensive experiments are conducted to demonstrate the
promising performance of the proposed GPU-based multigrid
algorithm. A set of published industrial power grids [16], [2]
and synthetic power grids are used to compare three solvers:
the proposed GpuHMD, the CPU implementation of the same
algorithm (CpuHMD), and the state-of-the-art CPU-based
direct sparse matrix solver CHOLMOD [9]. We also show
the results for the GPU-accelerated multigrid preconditioned
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TABLE III
DC ANALYSIS RESULTS OF THE HMD SOLVER. � IS THE NUMBER OF HMD ITERATIONS, � IS THE AVERAGE ERROR OF THE HMD SOLVER, AND � IS

THE WORST VOLTAGE DROP/BOUNCE ERROR. � �� IS THE GPU/CPU RUNTIME OF HMD SOLVER. THE DATA FOR THE VDD AND GND GRIDS IS SHOWN

IN THE FORM OF VDD/GND. SP. IS SPEEDUP OF THE GPUHMD SOLVER OVER THE CPUHMD SOLVER

Fig. 13. Runtime of 1 K relaxations on CPU and GPU.

Fig. 14. Runtime of multigrid solvers on CPU and GPU.

conjugate gradient (MGPCG) method. All the algorithms are
implemented using C++ and the GPU programming interface
CUDA [1]. The hardware platform is a Linux PC with Intel
Core 2 Quad CPU running at 2.66 GHz clock frequency and
two NVIDIA Geforce 9800 GX2 cards (including four GPUs
and each of them has a similar performance as Geforce 8800
GTX GPU).

A. Block Size Selection

As explained in Section V-C, GPU memory access (read/
write) latency can be dominant if the algorithm is not well im-
plemented. When the block size is 4 4, for each choice of the

Fig. 15. Runtime composition of GPU-based multigrid solver.

local Jacobi iteration (LBJ) number , the number of global it-
erations is empirically determined by . The ratio of the
pure GPU computing time over the total GPU runtime
(computing time + memory read/write time) for each industrial
benchmark circuit is shown in Fig. 11. From Fig. 11, we ob-
serve that the pure computation time can only be a fraction
(15% to 60%) of the total runtime , while using more local
LBJ iterations (larger ) can better hide the memory access la-
tency. However, it is less useful to do excessive local iterations,
since they may not help the convergence of the overall multigrid
solving. Therefore, the number of local iterations should be
selected to trade off between the relaxation runtime (GPU com-
puting efficiency) and global convergence rate (multigrid algo-
rithm efficiency). We suggest for the thread block size
4 4, and for the thread block size 8 8 in practice.

B. DC Analysis Results

We list information of the industrial power grid designs in
Table II, showing the sizes of the original irregular power grids,
the sizes of the 2-D regularized grids that are obtained from the
original power grids as discussed in Section III, the number of
multigrid levels, the number of multigrid V-cycles, as well as
the power grid solution range which is defined by the difference
of the maximum and minimum node voltages.

1) HMD Results: The multigrid solvers are terminated when
the residue is smaller than 10 of the original residual. Com-
prehensive results of the GPU-based multigrid solver for all the
industrial power grid designs are shown in Table III. The results
for VDD nets and GND nets are displayed as VDD/GND. In
Fig. 12 we compare the solution of circuit with the re-
sults obtained by GpuHMD solver (using one HMD iteration),
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Fig. 16. Spatial error distributions after the (left) first and (right) second HMD iterations.

Fig. 17. (left) Average error versus HMD iteration count. (right) Regular grid
size versus runtime.

showing that even after the first HMD iteration, a pretty accu-
rate voltage distribution can be obtained on GPU. Additionally,
in Table III, we show the runtime/accuracy results when using
different numbers of HMD iterations. As observed, using one
more iteration, the accuracy can be improved significantly. For
most benchmarks, GpuHMD produces a less than 0.5 mV av-
erage node voltage error.

The following insightful experiments are also conducted.
1000 relaxations are run on both the CPU and GPU. As shown
in Fig. 13, the GPU based computation achieves 93 to
117 speedups over its CPU counterpart. The runtimes of the
multi-V-cycle multigrid operations are also compared between
GPU and CPU. As shown in Fig. 14, our GPU implementation
achieves roughly 31 speedup for small grid and 87 speedup
for large grids. In Fig. 15, the runtimes of HMD iterations on
CPU and GPU have been shown, where the GPU runtime takes
more than 60% of the total runtime.

2) Errors of the HMD Iterations: To see the convergence be-
havior of the proposed HMD iterations, the spatial node voltage
error distributions of the VDD net of a power grid design are
shown in Fig. 16. The errors decrease drastically after two itera-
tions, indicating a very fast convergence of HMD iterations. The
average error versus the number of HMD iterations is shown for
a few large power grid designs in Fig. 17 (left). The average er-
rors of all four circuits can be damped very quickly after two or
three HMD iterations. In Fig. 18, we also show the average error
versus runtime plot of the GPU-based multigrid solver on a large
power grid design, where the errors can be reduced quickly by
increasing the number of multigrid iterations.

In Fig. 17 (right), the dependency of the total HMD runtime
on the regular grid size is shown for a power grid design. When

Fig. 18. Average error versus GPU-based HMD solving time for power grid
ibmpg6.

the coarse grid size is varied from 20% to 150% of the original
grid size, the GPU-based HMD runtime does not vary signif-
icantly under the same accuracy tolerance. This indicates that
the 2-D regularized grid (see Section III) is not required to be
very accurate compared with the original grid. A reasonably 2-D
regularized grid approximation is sufficient for fast HMD con-
vergence.

C. Scalability of Multigrid Solvers

Fig. 19 shows the runtime and memory comparisons of GPU-
based multigrid solver and the direct solver [9] for several large
synthetic power grids (similar to the ones depicted in Table II).
The multigrid solver is run on our four-core-four-GPU machine
(one CPU and one GPU are used) while the direct solver is run
on a more powerful computer (8-core Intel Xeon@2.33 GHz
with 8G RAM running 64-bit Linux). The runtime and memory
consumption of the multigrid solver increase linearly as the grid
size increases: the 1-threading (8-threading) direct solver typi-
cally runs 100 (20 ) slower and takes 20 more memory re-
sources. The running times of the multigrid solver for solving
very large grids are plotted in Fig. 20, where the thirty-million
grid nodes have been solved in 8 s. Our GPU-based multigrid
algorithm scales favorably with the circuit complexity, at a con-
stant rate about one second (runtime) and 100 Mb (memory) per
two million nodes.

D. Multi-Core-Multi-GPU Results

In previous section, we mentioned how to utilize the multi-
core computers with multi-GPU cards to further accelerate the
multigrid solver. Each CPU-GPU pair works on a smaller par-
tition of the original grid, while the residual computation and
smoothing steps are performed on the full grid. In this sec-
tion, we show the results of solving large 2-D regular grids on
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Fig. 19. (left) Runtime and (right) memory scalability of GPU-based multigrid
solver compared with parallelized direct solver (CHOLMOD [9]).

Fig. 20. Runtime of GPU-based multigrid solver for solving very large grids.

TABLE IV
GPU-BASED MULTIGRID RESULTS FOR MULTI-CORE-MULTI-GPU SYSTEM.

SIZE IS NUMBER OF NODES OF THE 2-D REGULAR GRID, WHILE � IS

THE RUNTIME OF THE MULTIGRID SOLVER ON N-CORE-N-GPU SYSTEM.
� IS THE RUNTIME OF THE DIRECT SOLVER (CHOLMOD) RUNNING

ON THE N-CORE CPU. SPD. IS SPEEDUP OF FOUR-GPU MULTIGRID

SOLVER OVER THE EIGHT-CORE DIRECT SOLVER. ALL THE

RUNTIME RESULTS ARE SHOWN IN SECONDS

multi-core-multi-GPU system. The synthetic 2-D regular grids
are split into smaller partitions with similar sizes based on the
grid geometries to well balance the workload. The runtime re-
sults of multigrid solver using different numbers of GPUs and
CPUs are shown in Table IV, where it is observed that when
using four-GPU system we can achieve up to 140 speedups
over the 8-core direct solver.

E. Multigrid Preconditioned Conjugate Gradient Method

We demonstrate the results of the GPU-based multigrid
preconditioning technique for conjugate gradient method
(MGPCG) in Table V. From the experiments we can find that
the numbers of MGPCG iterations are almost constant, not
varying much with the circuit sizes, while the traditional CG
solver for larger circuits may take 800 more iterations to

TABLE V
RESULTS OF MULTIGRID PRECONDITIONED CONJUGATE GRADIENT

METHOD (SEE SECTION VII). SIZE IS THE NUMBER OF NODES

OF THE CIRCUIT, � �� �� IS THE NUMBER OF

ITERATIONS USING THE CG/HMD/PCG METHOD,
� �� �� IS THE RUNTIME OF THE

CG/PCG/HMD SOLVER

converge. Our undergoing research project shows that by accel-
erating both the sparse matrix-vector multiplication kernel and
the multigrid solver on GPU, a significant amount of further
speedups can be achieved in the future.

It should be emphasized that our multigrid preconditioning
technique can be efficiently realized for the massively parallel
computing platform, while the other preconditioning techniques
that are based on incomplete matrix factorizations can not be
efficiently applied to the GPU computing platform.

IX. CONCLUSION

In this work, we address the challenge of large-scale power
grid analysis by developing a novel multi-core-multi-GPU ac-
celeration engine. To properly exploit the massively parallel
SIMT GPU architecture, a parallel multigrid algorithm is spe-
cially designed. To gain good efficiency on GPUs, we propose a
hybrid multigrid (HMD) analysis framework to handle the orig-
inal power grid on CPU, and a series of 2-D regularized coarser
grids on GPU, so as to eliminate most of GPU random memory
access patterns and simplify control flows. Novel coarse grid
construction and block smoothing strategies are adopted to suit
the SIMT GPU platform. The robustness of the algorithm is fur-
ther enhanced by an efficient multigrid preconditioned conju-
gate gradient method. Careful performance fine tuning is con-
ducted to gain good analysis efficiency on the GPU. Exten-
sive experiments have shown that the DC analysis accelerated
on a single-core-single-GPU system can achieve 100 runtime
speedups over a state-of-art direct solver and 50 speedups over
the CPU based multigrid solver. It is also demonstrated that
when utilizing a four-core-four-GPU system, a grid with eight
million nodes can be solved within about 1 s.
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